

2024-02-01

Whitepaper by Crunchfish. Icons by Icons8. Contact us at info@crunchfish.com

OFFLINE PAYMENTS FOR SMARTPHONES
Whitepaper by Kristian Sylwander and Joachim Samuelsson, Crunchfish

In the dynamic landscape of mobile payments, offline payments for smartphones have gained

traction1. Offline payments allow users to conduct transactions without a real-time connection

to a central server, offering convenience but also introducing unique challenges in terms of

security and reliability.

How can a payment application add offline payment capabilities? What are the distinct risks of

introducing these types of payments? And how can you build trust that enables secure and

reliable offline payments? This whitepaper addresses these questions and proposes practical

requirements for system operators considering an offline payment implementation.

Understanding Offline Payments

Offline payment refers to the ability of a smartphone to complete transactions without

requiring a continuous internet connection. This feature enhances user convenience, especially

when network connectivity is intermittent or unavailable. Another benefit of offline payments

is their ability to constantly work at the time of payment regardless of the state of the payment

service backend. Hence, offline payments can alleviate pressure on the core banking system

for low-value transactions.

1 https://www.bis.org/publ/othp64.pdf

Figure 1: A payment application must handle new asset types

when enabling offline payment capabilities.

Whitepaper by Crunchfish. Icons by Icons8. Contact us at info@crunchfish.com

Adding offline payment capabilities to a payment application requires handling a local offline

balance, representing the funds available offline. But that is not all; there is also a need to add

several other important asset types described in Figure 1. Throughout this whitepaper, the

above assets are referred to as the offline assets. The payment application must ensure that

the offline assets are kept secure both during execution of the application, which we refer to

as securing the application runtime, but also at rest, where these offline assets are stored.

The Risks with Offline Payments

While offline payments offer flexibility, they also introduce specific risks that need careful

consideration. The immediate risk is the ability to double-spend your balance while being

offline. Since the offline assets reside in a device that is in the control of an attacker, it is

paramount that the payment application takes the necessary precautions to protect the offline

assets and any operation performed on them. There are multiple ways that a potential attacker

can take to perform an attack that results in double-spending.

Attacking the Bearer Instrument

Rooting (Android) or jailbreaking (iOS) a device is probably the first cause of action when

attempting to attack an offline payment solution due to its simplicity and availability2. When

users root an Android device or jailbreak an iOS device, they gain elevated privileges and access

to parts of the operating system that are typically restricted. This allows users to customize

their devices extensively, install unauthorized applications, and modify system files such as the

2 https://www.kaspersky.com/blog/android-root-faq/17135/

Figure 2: An unsecure offline payment solution without

any security mechanisms in place.

Whitepaper by Crunchfish. Icons by Icons8. Contact us at info@crunchfish.com

offline assets and application data (see Figure 2). One way to approach this issue is not to

enable the payment application to run if a device is rooted or jailbroken using root-detection

software. However, root detection is like a cat-and-mouse game between the users and

manufacturers. Hence, root-detection is always one step behind, and counting on these

measures is risky. Often, they are easily circumvented by new rooting software. When designing

a solution for offline payments, it is crucial to consider that rooted or jailbroken devices are

present in the system.

Attackers can exploit rooting software to gain unauthorized access to application data and

encryption keys. Additionally, manipulating the operating system can deceive applications by

feeding them faulty information. Furthermore, altering the device's time can alter the

application's behavior. All these attacks can lead to a successful double-spending attempt. It is

also possible to exploit vulnerabilities in hardware, such as the CPU, which has been proven to

leak cryptographic keys3 4.

Using the security features of the mobile operating system (OS) leaves the app blindly trusting

whatever the OS throws at it. This is significant because changing the OS is relatively easy, and

applications rely on sensitive APIs and cryptographic operations.

Attacking the Application Runtime

While performing an offline payment, the application reads the offline assets into memory,

performs cryptographic operations, creates a transaction, and modifies the offline assets. Here,

an attacker can attempt to alter the code paths to circumvent risk rules, read the sensitive data

from memory, and even inject code to bypass security checks and alter values to create a valid

offline payment outside the limits of the offline assets.

Common ways to attack the application are various forms of tampering, using hooking software

to alter and inject code into an application and decompiling or reverse-engineering the

application data. It is essential to embrace the likelihood that the security mechanisms can be

circumvented and ask how that would affect the system.

Attacking the Stored Offline Assets

An attack on the offline assets typically means attempting to tamper, copy, or restore the data.

If such an attempt is successful, the attacker can, e.g., extract cryptographic keys, increase the

offline balance, modify the risk rules, and remove transactions, making it possible to spend

money that has already been spent. These attacks can generally be performed by, e.g., copying

an application to another device, running multiple instances of the same application, or

restoring the state of an older version.

3 https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-tang.pdf
4 https://theses.hal.science/tel-03282313/file/TROUCHKINE_2021_archivage.pdf

Whitepaper by Crunchfish. Icons by Icons8. Contact us at info@crunchfish.com

Mitigating the Risks with Offline Payment

Ensuring trust in offline payments circles around protecting offline assets in various situations.

It is possible to attack these offline assets in different ways. Hence, an offline payments solution

needs multiple layers of security mechanisms to counter-act, detect, and mitigate these attacks.

This section covers the baseline of security mechanisms required to achieve enough trust to

conduct offline payments safely.

Mobile application protection is hard, and existing mobile software protections are insufficient

for offline payments. They come in different shapes and forms, but all use three types of

software protection: Code Obfuscation, Runtime Application Self-Protection (RASP) or App

Shielding, and White-box Cryptography. Fundamentally, all these protections are better than

nothing but do not suffice for offline payments since they do not hold attackers back for long5.

A payment application requires protection not only against direct attacks on the application

itself but also against indirect attacks that may manifest as manipulation of the OS or

exploitation of hardware vulnerabilities.

While performing an offline payment, the application executes code that operates on the offline

assets. This is a sensitive operation that requires specific protection. Using standard Android

or iOS security for offline payments is not sufficient since the security available is not designed

for that purpose. For example, the Android Keystore or iOS Keychain provides an isolated

runtime where applications can generate keys and perform cryptographic operations.

However, it protects only the use of cryptographic keys and is, therefore, not sufficiently secure

for offline payments as they lack a secure runtime for other offline assets. A simple attack is all

it takes to bypass the offline balance and the risk limits. Furthermore, it has been proven that

Android Keystore, built on top of ARM Trustzone, has vulnerabilities that have given an attacker

access to the private keys stored within6.

Protecting the Application Runtime

A tamper-resistant element (TRE) is a security feature designed to prevent or detect

unauthorized access, modification, or compromise of a device. This TRE can provide an isolated

secure runtime, which is very difficult to attack from the outside. Here, it is safe to perform

operations on all offline assets and generate, store, and operate on cryptographic keys without

risking any interference from a potential attacker. A secure, isolated environment is essential

for an offline payment solution to ensure its logic remains secure. One way of achieving this

isolation is to integrate a virtual TRE in the payment application. Using the foundation of a

virtual tamper resistant element (TRE), multiple layers of protection can run through its secure,

isolated runtime, securing the protection mechanisms themselves7. Attackers cannot tamper

with the payment application or bypass the protection mechanisms without first breaking the

5 https://eprint.iacr.org/2018/098.pdf
6 https://ieeexplore.ieee.org/document/9152801
7 https://www.crunchfish.com/wp-content/uploads/2023/11/Lipis_WP6_Crunchfish_Enabling-offline-payments.pdf

Whitepaper by Crunchfish. Icons by Icons8. Contact us at info@crunchfish.com

TRE itself. Combining multiple protection mechanisms is crucial for achieving the necessary

security for the payment application. Examples of protection mechanisms to consider are (but

are not limited to) anti-reverse engineering, time locking, anti-cloning, anti-code-lifting, anti-

debugging, anti-hooking, anti-code injection, app integrity checks, and emulator/simulator

detection. Detecting a threat locks the payment application and requires the backend to unlock

it again.

The virtual TRE, using a virtualized CPU and encrypted memory, creates a self-contained space

within the application, isolating it from the underlying OS. This isolation ensures that the offline

payment solution operates within its secure environment, shielded from potential

vulnerabilities or changes in the OS. The virtual TRE includes many necessary dependencies

and libraries for offline payments. This independence means offline payments are less reliant

on external OS components, reducing the risk of vulnerabilities associated with OS updates.

Keeping the app self-sufficient makes security updates as simple as updating the payment

application. This is key to ensuring scalability in the market, as offline payments are available

to all smartphones without any dependencies on devices or mobile operators. Furthermore,

the application-bound architecture allows a payment application to run securely on rooted

devices, which makes the question of rooted vs non-rooted irrelevant. Root detection

mechanisms may still complement an offline solution but should not depend on it.

Figure 3: A secure Offline Payment solution that protects the

application runtime, the application data, and the offline assets.

Whitepaper by Crunchfish. Icons by Icons8. Contact us at info@crunchfish.com

Protecting the Stored Offline Assets

Securing the payment application is crucial, but we must also protect the offline assets stored

on the device. Android Keystore and iOS Keychain store their cryptographic keys encrypted on

the device's filesystem. This protects the key itself from being copied to another device, but it

does not protect it from attacks happening on the same device.

Instead, storing the offline assets in trusted storage through the virtual TRE is a great way to

keep the offline assets in the control of the application while also keeping them encrypted using

cryptographic keys. This restricts access to the offline assets, but they are still stored on the file

system, leaving them open to attack.

Rollback Protection

Implementing rollback protection is a must-have to prevent tampering with the offline assets

stored on the device. A rollback attack, in short, is a way to restore a previous state, usually a

balance, of a wallet, making it possible to spend money that has already been spent. This type

of attack opens the possibility of double-spending. To counter a rollback, an offline payment

solution requires the detection of any tampering with the offline assets and, as a result, locking

the offline wallet. Additionally, utilizing a TRE also protects the rollback protection logic from

tampering. Unlocking the offline wallet is only possible through an online sync with the

backend.

Leveraging Backend Reconciliation

There is increased acknowledgment from the market that backend reconciliation is an

important mechanism when securing offline payments. The ECB has indicated that user devices

would be expected to go online regularly for offline payments using a future digital euro8. By

leveraging the backend, the offline payment solution can perform synchronization operations

between the offline wallet and the online backend. For example, the online backend can analyze

offline transactions and detect if a particular user made a rollback of the offline assets and, if

so, enforce a lock the user's offline wallet.

8https://www.ecb.europa.eu/paym/digital_euro/investigation/profuse/shared/files/dedocs/ecb.dedocs230113_Annex_1_Digi

tal_euro_market_research.en.pdf

Whitepaper by Crunchfish. Icons by Icons8. Contact us at info@crunchfish.com

Conclusion

This whitepaper has delved into securing offline payments for smartphones, exploring the

inherent risks, particularly the threat of double-spending. The whitepaper emphasizes the

importance of keeping offline payments contained in its own environment within the payment

application and provides guidelines for what types of security mechanisms make up the

foundation of an offline payment solution.

.

Condensing the mitigations down to three key requirements for an offline payment solution:

- The inevitable presence of rooted or jailbroken devices must be handled.

- Implemented in a tamper-resistant element with an isolated runtime.

- Rollback protection is a must-have to protect offline assets.

Following this whitepaper's guidelines and requirements ultimately ensures robust and

resilient offline payments for smartphone users.

Figure 4: The key requirements for offline payments.

	Understanding Offline Payments
	The Risks with Offline Payments
	Attacking the Bearer Instrument
	Attacking the Application Runtime
	Attacking the Stored Offline Assets

	Mitigating the Risks with Offline Payment
	Protecting the Application Runtime
	Protecting the Stored Offline Assets
	Rollback Protection
	Leveraging Backend Reconciliation

	Conclusion

